مفاهیم میانگین پذیری روی حاصلضرب های خاص از جبرهای باناخ

thesis
abstract

در این پایان نامه، برای دو جبر باناخ a و b و تابعک خطی ضربی ناصفر ? روی b، فضای a×b را با اعمال جمع مولفه ای، ضرب اسکالر، ضرب ?-لائو و همچنین با l^1-نرم در نظر می ¬گیریم. با اعمال فوق a×b یک جبر باناخ است و آن را با نماد a×_?b نشان می دهند و ان را حاصلضرب ?-لائوی a و b می نامند. در اینجا برخی از مفاهیم میانگین پذیری مانند میانگین پذیری تقریبی، میانگین پذیری اساسی، n-میانگین پذیری ضعیف و میانگین پذیری دوری بین a و b و حاصلضرب ?-لائوی آنها را مشخصه سازی می کنیم. به علاوه، برای ایدآل های i از a و j از b، رابطه ی بین مشتق های از a به (i^(n و مشتق های از b به (j^(n را با مشتق های از a×_?b به (i×j)^(n) تحت شرایط خاصی و در حالت های مختلف بررسی می کنیم. همچنین ارتباط مفهوم n- میانگین پذیری ایدآلی بین این جبرها را مطالعه می کنیم. نهایتا، به بررسی چگونگی رایطه ی مفاهیم شبه- میانگین پذیری و شبه-انقباض پذیری و شبه- میانگین پذیری مشخصه ای بین a و b و حاصلضرب ?-لائوی آنها می پردازیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

آنالیز روی حاصلضرب های خاص از جبرهای باناخ

در این پایان نامه ضرب ?-لاتو را روی a*b که در آن a و b دو جبر باناخ و ? یک تابعک خطی ضربی ناصفر روی b است تعریف می کنیم. a*b همراه با این ضرب تشکیل یک جبر می دهد که آن را با نماد a*?b نشان می دهیم و به بررسی برخی از خواص این جبر و مقایسه آنها با موارد مشابه روی جبرهای a و b می پردازیم. در ادامه نرم های a-محدب و m- محدب را روی جبرهای جا به جایی مطالعه می کنیم و ضمن معرفی نرم عملگری ؟؟؟؟؟ با مقای...

15 صفحه اول

مفاهیم گوناگونی از میانگین پذیری در جبرهای باناخ

یکی از نظریه ها که مورد علاقه ریاضیدانان جهت تحقیق و مطالعه در گرایش آنالیز هارمونیک می باشد، نظریه میانگین پذیری جبرهای باناخ است. نظریه میانگین پذیری در اوایل قرن بیستم با شروع مفهوم تئوری اندازه ها مورد بررسی و مطالعه قرار گرفت. در سال 1949 برای اولین بار دی مفهوم میانگین پذیر را برای گروه ها به کاربرد و جانسون میانگین پذیری جبرهای باناخ را به شکل کلی معرفی کرد. میانگین پذیری ضعیف جبرهای بان...

15 صفحه اول

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

مفاهیم گوناگون در میانگین پذیری و دوتصویری جبرهای باناخ

ابتدا مفاهیم مشخصه های یک جبر باناخ که در آن و همومورفیسم های پیوسته روی یک جبر باناخ می باشند را معرفی و تعریف می کنیم. اگر = باشد این مشخصه ها را با یا نمایش می دهیم. تعاریف انقباض پذیری دوتصویری و قطر را بترتیب به مفاهیم -انقباض پذیری -دوتصویری و -قطر توسیع می دهیم که در آن همومورفیسم پیوسته روی یک جبر باناخ است. سپس رابطه های بین -انقباض پذیری -دوتصویری و وجود یک -قطر را برای یک جبر باناخ...

میانگین پذیری جبرهای باناخ

در این پایان نامه، شرایط لازم و کافی برای میانگین پذیری جبر باناخ a، به ویژه قضیه جانسون را مطالعه می کنیم. هم چنین رابطه میانگین پذیری و منظم بودن جبر باناخ a را تحقیق می کنیم. علاوه بر این شرایطی را بررسی می کنیم که تحت آن میانگین پذیری ضعیف دوگان دوم a ، میانگین پذیری ضعیف a را ایجاب می کند

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023